Resolution

10 meter

10 record(s)

 

Type of resources

Available actions

Provided by

Years

Formats

Representation types

Resolution

From 1 - 10 / 10
  • Der modifizierte Bodenfeuchte-Index (BFi) stellt ein Maß für die reliefbedingten, potentiellen Feuchteverhältnisse des Bodens dar. Er errechnet sich einerseits aus dem komplexen Reliefparameter Einzugsgebietsgröße, also der potentiell durch Abfluss zur Verfügung stehenden Wassermenge und andererseits aus dem lokalen Reliefparameter Neigung. Die Neigung steuert die Fließgeschwindigkeit und damit die Verweildauer des abfließenden Wassers. Weitere Details zum Verfahren (ohne Modifikation) finden sich bei BÖHNER & KÖTHE (2003). Der modifizierte Bodenfeuchte-Index ist ein leistungsfähiger Reliefparameter. Es gelingt u.a., dass breite Talböden einen einheitlichen hohen Bodenfeuchte-Index aufweisen und nicht wie z.B. bei MOORE et al. (1993) hohe Indizes nur auf die schmalen Abflusslinien in den Talböden konzentriert bleiben (vgl. BÖHNER & KÖTHE 2003). Die Modifikation des Bodenfeuchte-Index besteht in erster Linie in der Gewichtung der Hangneigung. Der verwendete Gewichtungsfaktor beträgt den Wert 2 (Standardwert ist 1). Der relativ hohe Gewichtungsfaktor 2 führt zwar dazu, dass im Bergland der Bodenfeuchte-Index recht undifferenziert ist und bereits die Endmoränen der Geest ähnlich geringe Werte wie das Bergland aufweisen. Dafür sind aber alle sehr flach geneigten Gebiete stark differenziert. Da Niedersachsen überwiegend ein flach geneigtes Relief aufweist und da der Zusammenhang Boden -Relief in grundwassernahen Standorten i.d.R. stärker ist, wurde sich für einen hohen Gewichtungsfaktor entschieden. BÖHNER, J. & KÖTHE, R. (2003): Bodenregionalisierung und Prozeßmodellierung: Instrumente für den Bodenschutz. – Peterm. Geogr. Mitt., 147, 2003/3: 72-82; Gotha.

  • Der hier vorliegende Sedimentbilanzindex geht auf das von Möller et al. (2008) beschriebene Ableitungsverfahren zurück und ist eine Weiterentwicklung der von BÖHNER & SELIGE (2006) beschriebenen Methode. Grundlage hierfür ist die Kombination verschiedener Reliefparameter, wobei Parameter des Bodens (Bodenart), der Niederschläge oder der Landbedeckung in der Anwendung unberücksichtigt bleiben. Die Berechnung geht vom Grundgedanken des LS-Faktors des USLE (WISCHMEIER & SMITH (1978)) aus. Die Hangneigung wird über ein Äquivalent des Sedimenttransportindex (STIS) integriert. Die Hanglänge fließt über Exponentenwerte für flache Hänge ein (SCHWERTMANN et al. (1990)). Der Sedimentbilanzindex beschreibt somit ein relatives Potential des Reliefs zum Abtrag (Index -4 bis <1) bzw. zur Akkumulation (Index >1 bis 4,5) von Bodenmaterial. Weiterentwicklungen werden bei MÖLLER et al. (2008) beschrieben. MÖLLER, M., VOLK, M., FRIEDRICH, K. & LYMBURNER, L. (2008): Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. Journal of Plant Nutrition and Soil Science 171 (3), 419-430. BOEHNER, J. & SELIGE, T. (2006): Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In: Boehner, J., McCloy, K.R., Strobl, J.: SAGA - Analysis and Modelling Applications, Goettinger Geographische Abhandlungen, Vol.115, p.13-27. SCHWERTMANN, U., VOGL, W. & KAINZ, M. (1990): Bodenabtrag durch Wasser – Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. – 2. Aufl.: Stuttgart, 64 pp. WISCHMEIER, W.H. & SMITH, D.D. (1978): Predicting rainfall erosion losses – A guide to conversation planning. – Agriculture Handbook No. 537: US Department of Agriculture, Washington DC.

  • Der komplexe Reliefparameter Einzugsgebietsgröße beschreibt die Größe des Einzugsgebietes einer Rasterzelle in der Tiefenlinie. Die Berechnung erfolgte unter Verwendung eines Multiple-Flow-Direction-Algorithmus nach FREEMAN (1991). Die Einzugsgebietsgröße der Tiefenlinien wurde bestimmt, um einen Anhalt zur Trennung der Talformen mit fluvialer oder kolluvialer (Abschwemmmassen) Füllung zu erhalten. Dargestellt werden Tiefenlinien mit einem Einzugsgebiet größer 40 ha. Die hier vorliegende Auswertung beruht auf dem nach 10 m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1). FREEMAN, T.G. (1991): Calculating catchment area with divergent flow based on a regular grid. -Computers and Geoscience, Bd. 17, 3: 413-422.

  • Das Digitale Geländemodell - Höhen ohne anthropogene Reliefformen des Landesamtes für Bergbau, Energie und Geologie (sDGM10LBEG_HOAR) ist eine Weiterbearbeitung des Digitalen Geländemodell des Landesamtes für Bergbau, Energie und Geologie (sDGM10LBEG), in der zusätzlich anthropogene Reliefformen (z.B. Verkehrsdämme, Einschnitte) eliminiert sowie Abfluss- und geomorphographischen Parametern berechnet wurden, wie z.B. Neigung in Prozent. Die Hangneigung beschreibt den Winkel zwischen Geländeoberfläche und der ebenen Horitontalen. Definition und Berechnung: SAGA-Standard. Einheit: [%]. ZEVENBERGEN, L. W. & THORNE, C. R. (1987): Quantitative analysis of land surface topography. In: Earth Surface Process and Landforms, 12, S. 47-56.

  • Die geomorphographische Karte (GMK10) beruht auf dem nach 10 m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1). Die Ableitung erfolgte auf dem korrigierten und auf 10 m ausgedünnten Raster ohne Aufträge und Abträge (DGM10oAF). Dargestellt werden einfache Reliefformen in Anlehnung an die 5. Auflage der bodenkundliche Kartieranleitung (Ad hoc AG Boden 2005). Die Tiefenbereiche werden ab einer Einzugsgebietsgröße von 40 ha dargestellt. Sie werden nach Einzugsgebietsgröße und einer relativen „Höhe“ (Senkenbereiche im Senkenbereich, Scheitelbereiche im Senkenbereich) untergliedert. Ziel ist es, im Hauptsenkenbereich kleinere Gerinne und relative Hochlagen zu kennzeichnen. Die Hänge werden in vier Gruppen der Neigungsklassen (N 0-1 = eben bis flach, N 2-3 = Hänge mit deutlicher Neigung zur Erosion, aber ackerbaulich nutzbar, N 4 = ackerbaulich nicht mehr nutzbar, N 5-6 = Steilhänge mit deutlicher Neigung zu gravitativen Hangbewegungen) gegliedert. Diese Zusammenfassung erfolgt im Hinblick auf die Verwendung für die BK50 von Niedersachsen. Scheitelbereiche sind Verebnungen in Hochlagen. Sie werden wie die Hänge in zwei Neigungsklassen (N 0-1 und N 2-3) getrennt. Extra ausgewiesen werden gradartige Scheitelbereiche, da diese häufig extrem flache Standorte sind und/oder die lössige Hauptlage fehlt.

  • Der Terrain Classification Index = (TCIlow) ist ein dimensionsloser Index im Wertebereich von 0-2. Er überhöht geringste Höhendifferenzen, insbesondere in Tiefenbereichen. Auch bei geringsten Reliefunterschieden werden Gerinne und flache Senken erkennbar. In der Nähe von anthropogenen Bauwerken wie Deichen, Dämmen oder Halden können Reste oder Artefakte die Werte verfälschen. Der Reliefklassifikationsindex TCIlow beruht auf dem nach 10m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1) und wird aus den komplexen Reliefparametern Höhe über Tiefenlinie, Einzugsgebietsgröße und modifizierten Bodenfeuchteindex berechnet (BOCK, BÖHNER, CONRAD, KÖTHE & RINGELER (2007)). BOCK, M., BÖHNER, J., CONRAD, O., KÖTHE, R. & RINGELER, A. (2007): Methods for creating Functional Soil Databases and applying Digital Soil Mapping with SAGA GIS. - In: Hengl, T. et al. (Eds.) Status and prospect of soil information in south-eastern Europe: soil databases, projects and applications. - EUR 22646 EN, 149-163, Scientific and Technical Research series, Office for Official Publications of the European Communities; Luxemburg.

  • Die Globalstrahlung oder der potentielle topographische Strahlungsgenuss gibt die Energiemenge an, die in einem Jahr direkt auf die Erdoberfläche trifft. Streuungen werden hierbei nicht berücksichtigt. Der Reliefparameter geht damit hinsichtlich seiner Aussagekraft über Parameter wie Sonn- und Schatthang oder eine Klassifikation der Exposition hinaus. Die Transmissionsrate (verringerte Durchlässigkeit der Atmosphäre durch Bewölkungseinfluss) wurde mit 60 % angesetzt (60 % = ca. Durchschnittswert für Deutschland). Definition und Berechnung: SAGA-Standard. Einheit: [KWh/m2] BÖHNER, J., & ANTONIC, O. (2009). Land-Surface Parameters Specific to Topo-Climatology. In T. Hengl, & H. I. Reuter (Eds.), Geomorphometry: Concepts, Software, Applications (pp. 195-226). Elsevier Science.

  • Der Scheitelbereichsindex stellt einen kombinierten Reliefparameter aus relativer Hangposition und Hangneigung dar. Er dient in erster Linie zur Ermittlung von Scheitelbereichen (relativ flachgründige Standorte). Als Nebeneffekt zeigen mittlere Werte des Scheitelbereichsindexes meist Hänge bzw. Verflachungen (z.B. Terrassen, Geestplatten) anMittlere bis hohe Werte weisen auf Talböden hin und sehr hohe Werte auf steile Hänge in relativer Tiefposition (z.B. Terrassenböschungen und steile Kerbtäler). Er wird mit folgender Formel berechnet: Scheitelbereichsindex = relHP + N wobei: relHP = Relative Hangposition (invertiert) N = Hangneigung (Neigungen > 60° -> = 60°, Exponent = 0.4, normiert auf 0.0 bis 1.0) Durch die Einbeziehung der Hangneigung wird der Reliefparameter relative Hangposition dahingehend modifiziert, dass Verflachungen in relativer Toplage des Reliefs sehr geringe Werte aufweisen und es am Übergang zu den Hängen zu einem meist abrupten Anstieg des Scheitelbereichsindexes kommt. Definition und Berechnungsverfahren: KÖTHE (2007), realisiert durch SAGA-Modul der scilands GmbH und SAGA-Modul "Grid Calculator".

  • Das Digitale Geländemodell 1 : 5 000 des Landesamtes für Bergbau, Energie und Geologie ((DGM5LBEG) ist die korrigierte und veränderte Version des Digitalen Geländemodells 1 : 5 000 (DGM5) des Landesamts für Geoinformation und Landentwicklung Niedersachsen (LGLN). Mit der Korrektur wurden die Teilkacheln zusammengefügt, Blattschnittprobleme und verschiedene Fehler wurden eliminiert und die Daten wurden auf ein Bezugssystem (Gauß-Krüger 3. Meridian) projiziert. Die Arbeitsschritte sind umfangreich dokumentiert. Die Rasterdaten liegen im Ergebnis blattschnittfrei und flächendeckend in einem Datensatz für Niedersachsen vor. Das DGM5LBEG repräsentiert die Geländeoberfläche und somit das Relief der Erde durch Höhenpunkte, die als regelmäßiges Gitter angeordnet sind. Es hat eine Rasterweite von 12,5 m.

  • Der Solifluktionsindex wurde entwickelt, um Areale mit bevorzugter Akkumulation solifluidaler Ablagerungen (Fließerden) zu prognostizieren. Er wird nach BÖHNER & SELIGE (2006) berechnet und benutzt die relative Hangposition, die eng mit der Mächtigkeit der periglazialen Solifluktionsdecken korreliert. Die relative Hangposition wird dabei mit einem Faktor kombiniert, der sich aus spezifischer Einzugsgebietsgröße und gewichteter Einzugsgebietsneigung berechnet (BÖHNER & SELIGE (2006)). BOEHNER, J. & SELIGE, T. (2006): Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In: Boehner, J., McCloy, K.R., Strobl, J.: 'SAGA - Analysis and Modelling Applications', Goettinger Geographische Abhandlungen, Vol.115, p.13-27.